

10A Relay - JS1-5V-F - Trēo™ Module

Module Features

- Panasonic JS1-5V-F Relay
- RoHS Compliant
- Software Library
- NightShade Trēo™ Compatible
- Breakout Headers

JS1-5V-F Features

(from Panasonic)

- 10A Current Rating
- C Form: NO & NC

Applications

- Lighting
- Process Control
- Home Automation
- Industrial Equipment

Trēo[™] Compatibility

Electrical

Communication	GPIO
Max Current, 3.3V	1mA
Max Current, 5V	79mA

Mechanical

- 35mm x 35mm Outline
- 30mm x 30mm Hole Pattern
- M2.5 Mounting Holes

Description

The JS1-5V-F Trēo[™] Module is a 10A Relay module that features Panasonic's JS1-5V-F 10A Relay. It can be used in a normally-open or normally-closed configuration. This module is a part of the NightShade Treo system, patent pending.

Table of Contents

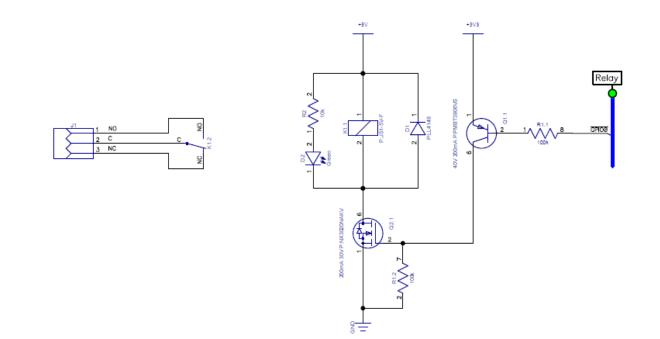
1	Summary	2
2	What is Trēo™?	2
3	Electrical Characteristics	2
4	Electrical Schematic	3
5	Mechanical Outline	4
6	Example Arduino Program	5
7	Library Overview (C++ & Python)	6

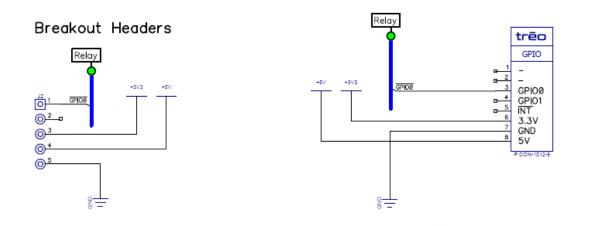
1 Summary

This module is operated using the NightShade_Treo_DigitalOutput library. The module operated with the on(), off(), toggle(), and set() methods. The current state can be found with the read() method.

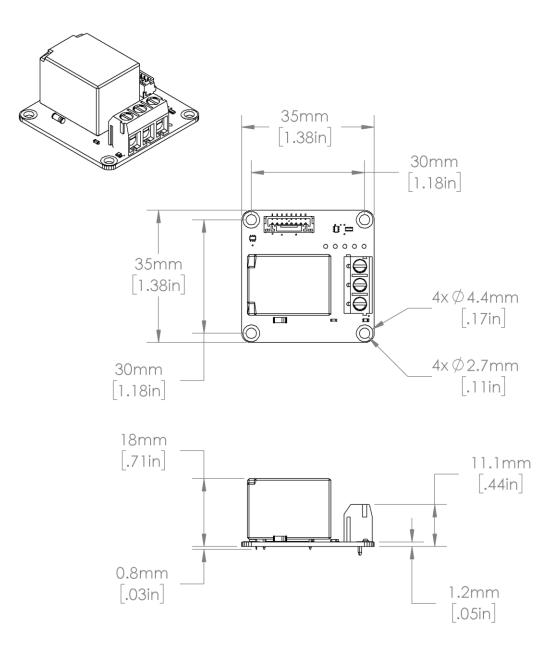
2 What is Trēo[™]?

NightShade Trēo is a system of electronic modules that have standardized mechanical, electrical, and software interfaces. It provides you with a way to quickly develop electronic systems around microprocessor development boards. The grid attachment system, common connector/cabling, and extensive cross-platform software library allow you more time to focus on your application. Trēo is supported with detailed documentation and CAD models for each device.


Learn more about Trēo here.


3 Electrical Characteristics

	Minimum	Nominal	Maximum
Voltages			
V _{i/o} (GPIO)	-0.3V	-	3.6V
V _{3.3V}	3.1V	3.3V	3.5V
V _{5V}	4.8V	5.0V	5.2V
Specifications			
Contact Voltage	-	-	250VAC / 100VDC
Contact Current	-	-	10A AC / 5A DC


4 Electrical Schematic

5 Mechanical Outline

nightshade.net

6 Example Arduino Program

```
DigitalOutput - NightShade Treo by NightShade Electronics
 This sketch demonstrates the functionality of the
 NightShade Treo digital output modules like LEDs and
 relays.
 Created by Aaron D. Liebold
 on February 15, 2021
 Links:
 NightShade Treo System: https://nightshade.net/treo
 Distributed under the MIT license
 Copyright (C) 2021 NightShade Electronics
 https://opensource.org/licenses/MIT
// Include NightShade Treo Library
#include <NightShade_Treo.h>
// Declare Objects (Dual Output Device - GPI00: D5, GPI01: D4)
NightShade_Treo_DigitalOutput out0(5);
NightShade_Treo_DigitalOutput out1(4);
void setup() {
}
void loop() {
 out0.on();
 delay(500);
 out0.off();
 delay(500);
 out1.on();
 delay(500);
 out1.off();
 delay(500);
```

}

7 Library Overview (C++ & Python)

C++ Class

NightShade_Treo_DigitalOutput <classObject>();

Python Module

<classObject> = NightShade_Treo.DigitalOutput()

7.1 Constructors

NightShade_Treo_DigitalOutput(int gpioPin)

Creates a DigitalOutput object.

Arguments: gpioPin

Integer of the GPIO pin

Returns: Nothing

7.2 Methods

on()

Turns the GPIO output to the ON state.

Arguments: None

Returns:

Error

0 = Success

off()

Turns the GPIO output to the OFF state.

Arguments: None

Returns:

Error

0 = Success

toggle()

Toggles the GPIO output state.

Arguments:

None

Returns:

Error

0 = Success

set(int enable)

Sets the GPIO to the ON (enabled) or OFF (disabled) state.

Arguments: enable

true/false

Returns:

Error

0 = Success

read()

Returns the current GPIO state.

Arguments:

None

Returns:

GPIO state	0: Off
	1: On