

# 10x 4/2 Channel ADC - MAX11612 - Trēo™ Module

### Module Features

- Maxim Integrated MAX11612
- RoHS Compliant
- Software Library
- NightShade Trēo™ Compatible
- Spring Terminals
- Breakout Headers

### MAX11612 Features

(from Maxim Integrated)

- 0 40V Range
- 12-Bit Resolution
- 4 Single-Ended Channels or 2 Fully Differential Channels
- Internal Voltage Reference
- 5MHz Bandwidth (-3dB)

### **Applications**

- Industrial Signal Input
  - Pressure Sensors
  - Flow Meters
- Power Monitoring
  - o Solar Energy
  - o Alternative Energy
- Battery Management Systems

## Trēo<sup>™</sup> Compatibility

#### Electrical

| Communication     | I2C |
|-------------------|-----|
| Max Current, 3.3V | 1mA |
| Max Current, 5V   | 1mA |

### Mechanical

- 35mm x 25mm Outline
- 30mm x 20mm Hole Pattern
- M2.5 Mounting Holes



### Description

The MAX11612 Trēo<sup>™</sup> Module is an ADC module that features Maxim Integrated's MAX11612 ADC. The module provides 4 singled-ended ADC inputs or 2 full-differential inputs. Measurements are made with bandwidths up to 5MHz and 12-bit resolution. This module is a part of the NightShade Treo system, patent pending.

## **Table of Contents**

| 1 | Summary                         | 2 |
|---|---------------------------------|---|
| 2 | What is Trēo™?                  | 2 |
| 3 | Electrical Characteristics      | 2 |
| 4 | Electrical Schematic            | 3 |
| 5 | Mechanical Outline              | 4 |
| 6 | Example Arduino Program         | 5 |
| 7 | Library Overview (C++ & Python) | 6 |



## 1 Summary

The MAX11612 ADC can make measurements on 4 channels with respect to ground (single-ended) or it can measure the voltage between channel 0 and 1, or 2 and 3; providing fully differential measurement. When using the MAX11612 for single-ended measurements, all four channels are measured simultaneously with the acquireAllChannels() function and measurements are stored in a local buffer. The measurements are retrieved with the readChannel() function. The differential measurements are made with the measureDiffChXChX() function corresponding to channels 0 and 1, or 2 and 3. The measurements can be made with respect to the internal reference (default) or to an external reference tied to the A3 pin.

# 2 What is Trēo<sup>™</sup>?

NightShade Trēo is a system of electronic modules that have standardized mechanical, electrical, and software interfaces. It provides you with a way to quickly develop electronic systems around microprocessor development boards. The grid attachment system, common connector/cabling, and extensive cross-platform software library allow you more time to focus on your application. Trēo is supported with detailed documentation and CAD models for each device.

Learn more about Trēo here.

| Γ                                | Minimum                   | Nominal                          | Maximum                      |
|----------------------------------|---------------------------|----------------------------------|------------------------------|
| Voltages                         |                           |                                  |                              |
| V <sub>i/o</sub> (SDA, SCL)      | -0.3V                     | -                                | 3.6V                         |
| V <sub>3.3V</sub>                | 3.1V                      | 3.3V                             | 3.5V                         |
| V <sub>5V</sub>                  | 4.8V                      | 5.0V                             | 5.2V                         |
| V <sub>in</sub> (A0, A1, A2, A3) | -0.3V                     | -                                | 40V                          |
| V <sub>ExtRef</sub>              | 0V                        | -                                | V <sub>5V</sub>              |
| Measurement                      |                           |                                  |                              |
| Bandwidth (-3dB)                 | -                         | -                                | 840kHz                       |
| Sample Rate (Int. Clock)         | -                         | 51ksps                           | -                            |
| Range                            | 0V                        | 10*V <sub>ExtRef</sub>           | 40V                          |
| Precision                        | 10*V <sub>Ref</sub> /4096 | 10mV (V <sub>ref</sub> = 4.096V) | 12mV (V <sub>ref</sub> = 5V) |
| Error (25°C)                     | -2.4%                     | -                                | +2.4%                        |
| I2C Slave Address                |                           | 0x34                             |                              |
| Operating Temperature            | -25°C                     | -                                | +85°C                        |

# **3** Electrical Characteristics

nightshade.net



# 4 Electrical Schematic



**Breakout Headers** 





nightshade.net



# 5 Mechanical Outline



nightshade.net



## 6 Example Arduino Program

```
MAX11612 ADC - NightShade Treo by NightShade Electronics
 This sketch demonstrates the functionality of the
 NightShade Trēo MAX11612 ADC module. (NSE-1127-1/2) It
 prints the voltage present on channel 0 to Serial at
 115200 baudrate. 10x mode can be enabled for the
 NSE-1127-2.
 Created by Aaron D. Liebold
 on February 15, 2021
 Links:
 NightShade Trēo System: https://nightshade.net/treo
 Product Page: https://nightshade.net/product/treo-4-2-channel-12-bit-adc-max11612/
 Distributed under the MIT license
 Copyright (C) 2021 NightShade Electronics
 https://opensource.org/licenses/MIT
// Include NightShade Treo Library
#include <NightShade_Treo.h>
// Declare Objects
NightShade_Treo_MAX11612 adc(1);
// Set to 1 to enable the 10x input for NSE-1127-2
#define ENABLE_10X_INPUT 0
void setup() {
 adc.begin();
 Serial.begin(115200);
}
void loop() {
 adc.acquireAllChannels();
 if (ENABLE 10X INPUT) {
   Serial.print((long) 10 * adc.readChannel(0));
 } else {
   Serial.print(adc.readChannel(0));
 Serial.println("mV");
 delay(1000);
```

}



## 7 Library Overview (C++ & Python)

### C++ Class

NightShade\_Treo\_MAX11612 <classObject>();

#### **Python Module**

<classObject> = NightShade\_Treo\_MAX11612()

### 7.1 Constructors

#### NightShade\_Treo\_MAX11612(int port, uint32\_t clockSpeed)

Creates a ValveManifoldController object.

Arguments:

port clockSpeed Integer of the I2C port used. (e.g. 0 = "/dev/i2c\_0") The desired clock speed for the I2C bus.

Returns:

nothing

### NightShade\_Treo\_MAX11612(int port)

Creates a ValveManifoldController object assuming the default slave address and clock speed.

Arguments:

Integer of the I2C port used. (e.g.  $0 = "/dev/i2c_0"$ )

Returns:

nothing

port

### 7.2 Methods

### begin()

Initializes the MAX11612 to use the internal clock and internal voltage reference of 4.096V.

Arguments: none

#### Returns:

error

0 = Success



### acquireAllChannels()

Reads all channels (single ended) and stores the results in a local buffer. Data is read from the local buffer with the readChannel() function.

|   | Arguments<br>none                                                                                                          |                                                                                                                                                                                        |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | Returns<br>error                                                                                                           | 0 = Success                                                                                                                                                                            |  |  |  |
| r | eadChannel(int channel)                                                                                                    |                                                                                                                                                                                        |  |  |  |
|   | Returns channel measu<br>acquireAllChannels() fu                                                                           | eturns channel measurement value from the local buffer. The measurement is performed with the cquireAllChannels() function. When using the internal reference, the result is 10mV/LSB. |  |  |  |
|   | Arguments<br>channel                                                                                                       | Number of the requested channel value (1-4)                                                                                                                                            |  |  |  |
|   | Returns<br>value                                                                                                           | The ADC value of the corresponding channel (int)                                                                                                                                       |  |  |  |
| r | eadDiffCh0Ch1()                                                                                                            |                                                                                                                                                                                        |  |  |  |
|   | Reads the voltage differ                                                                                                   | ential between channel 0 and channel 1.                                                                                                                                                |  |  |  |
|   | Arguments<br>none                                                                                                          |                                                                                                                                                                                        |  |  |  |
|   | Returns                                                                                                                    |                                                                                                                                                                                        |  |  |  |
| r | value<br>eadDiffCh1Ch0()                                                                                                   | The ADC value of the voltage between the differential channels                                                                                                                         |  |  |  |
| • | Reads the voltage differential between channel 1 and channel 0. When using the internal reference, the result is 10mV/LSB. |                                                                                                                                                                                        |  |  |  |
|   | Arguments<br>none                                                                                                          |                                                                                                                                                                                        |  |  |  |
|   | Returns<br>value                                                                                                           | The ADC value of the voltage between the differential channels                                                                                                                         |  |  |  |
| r | eadDiffCh2Ch3()<br>Reads the voltage differ<br>result is 10mV/LSB.                                                         | ential between channel 2 and channel 3. When using the internal reference, the                                                                                                         |  |  |  |
|   | Arguments<br>none                                                                                                          |                                                                                                                                                                                        |  |  |  |
|   |                                                                                                                            |                                                                                                                                                                                        |  |  |  |

#### Returns

value

The ADC value of the voltage between the differential channels



### readDiffCh3Ch2()

Reads the voltage differential between channel 3 and channel 2. When using the internal reference, the result is 10mV/LSB.

| Argume                                                             | ents<br>none   |                                                                                                                      |  |  |  |  |
|--------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Returns                                                            | value          | The ADC value of the voltage between the differential channels                                                       |  |  |  |  |
| enableExternalReference(int enable)                                |                |                                                                                                                      |  |  |  |  |
| Enables the use of the external voltage reference connected to A3. |                |                                                                                                                      |  |  |  |  |
| Argume                                                             | ents<br>enable | 0: Internal Voltage Reference<br>1: External Voltage Reference                                                       |  |  |  |  |
| Returns                                                            | error          | 0 = Success                                                                                                          |  |  |  |  |
| enableReferenceOutput(int enable)                                  |                |                                                                                                                      |  |  |  |  |
| Connects internal voltage reference to the reference pin, A3.      |                |                                                                                                                      |  |  |  |  |
| Argume                                                             | ents<br>enable | 0: Reference pin can be used as a reference input<br>1: Reference pin is connected to the internal voltage reference |  |  |  |  |
| Returns                                                            | error          | 0 = Success                                                                                                          |  |  |  |  |